欢迎光临欧奏沛尔(江苏)环保技术有限公司网站!

工程案例

PROJECT CASES

我的位置:首页 > 核心优势
核心优势
  •            高效节能          

    臭氧制备中能耗是为关键的参数,也是降低臭氧应用成本的重要考量。
    欧奏沛尔臭氧技术通过以下几个有效手段降低能耗:
    •          高频 (3000-8,000 Hz)。臭氧必须在交流供电情况下产生,供电频率越高,产生臭氧的效率越高。然而如果没有IGBT软开关技术,追求高频率势必影响电源的可靠性。欧奏沛尔是在臭氧IGBT供电系统实现了软开关技术的企业。
    •          低电压(3000~6000V)。臭氧生成量主要与电流直接相关。在相同电流下,形成等离子体的电压越低,生成臭氧的能耗就越低。欧奏沛尔臭氧发生器工作电压约3000-6000V
    •          高压电极冷却。等离子体的温度越高,臭氧被分解的速率也越快。欧奏沛尔特有的地电极和高压电极同时冷却技术进一步降低了在等离子体内臭氧的分解率,进而降低了能耗。
    •          高效电源。欧奏沛尔臭氧电源采用了IGBT软开关技术、协振频率自锁技术、有源功率因素校正技术(active PFC)、油浸水冷变压器技术、横排竖绕电感技术等先进技术,使得臭氧制备能耗进一步降低。
    欧奏沛尔臭氧发生器能耗与臭氧浓度 (25℃, 欧洲标准*,93% oxygen)


    *欧洲臭氧浓度仪表观值比中国常见臭氧浓度仪表观值低10%左右。

  •             高浓度            

    臭氧在气体中的浓度越高,产生同样臭氧量消耗的氧气就越低,臭氧的成本就越低。同时高浓度的臭氧更有利于臭氧的溶解和氧化反应。
    欧奏沛尔通过以下手段提高臭氧浓度:
    •          高频 (3000~8,000 Hz)。臭氧需要在交流供电情况下产生,供电频率越高,产生臭氧的效率越高,越易获得更高的臭氧浓度。欧奏沛尔IGBT软起动技术为高频臭氧发生技术提供了先决条件。
    •          短流道 (~200 mm)。欧奏沛尔短流道技术有效缓解了等离子体中臭氧被分解的几率,因为对产生高浓度臭氧有利。
    •          高压电极冷却。在等离子体的温度越高,臭氧被分解的速率也越高。欧奏沛尔特有的地电极和高压电极同时冷却技术进一步提高了臭氧浓度。
    •          高效电源。欧奏沛尔臭氧电源采用的IGBT软开关技术、协振频率自锁技术、有源功率因素校正技术(active PFC)、油浸水冷变压器技术、横排竖绕电感技术等先进技术对提高臭氧浓度均有积极影响。

               维护方便          

  • 以60公斤臭氧装置为例,一个60公斤玻璃管臭氧器通常有2000根玻璃管,只要有一根玻璃管破裂,整个系统需要停机,进行复杂的维修。欧奏沛尔60公斤臭氧发生器由6个独立臭氧发生单元组成,每个单元可以单独故障,其他5个单元可以继续工作,对臭氧供应不产生显著影响。

  •             体积小            

  • 欧奏沛尔板式臭氧发生单元的体积仅为玻璃管臭氧发生单元的1/3左右。


  •  

  • 臭氧发生室技术:

    集成板式臭氧发生器技术是欧奏沛尔的核心产品,以抗氧化金属板为地级材料、以陶瓷片为阻电介质通过高度集成技术制造低压等离子体臭氧发生装置。该技术将低电压(3000±300V)、高频率(7500±1000Hz)、短流道(200mm)等优势技术集中一体,为获得高浓度臭氧和低能耗运行提供了技术基础。
    已知技术中板式臭氧发生器每个地极板均对外设置进气、出气、进水、出水,一个百公斤级的臭氧发生装置会有几千个接口,大大影响提高了故障率和可靠性,给安装和维修带来麻烦。
    欧奏沛尔板式臭氧发生器技术将多大几十个地极板集成成臭氧发生器单元,每个单元只有组无外接口,因而系统可靠性得到显著提高。


  • 模块化管式臭氧发生器:

  •   臭氧发生器组件和臭氧电源采用模块化设计,单套电源和单区域放电体损坏后不影响其他单元。为客户减少备用机提供便利

  •                            1675125852813.png                                  image.png

  • 数字化谐振频率锁定技术:


    臭氧发生器是电容性器件,该电容器与臭氧发生器电源中的某个电感器在特有频率下发生协振,发生器在该协振频率下工作效率高。然而由于臭氧发生器的等效电容值随供气压力、供气流量、等离子体温度、发生器供电功率等等参数变化而改变,因此在国际范围内绝大部分臭氧发生器均在偏离协振频率的工况下工作。国际范围内有极少数企业利用模拟电路尝试实现跟踪臭氧发生器的协振频率,同时将电源供电频率与之连锁。但是由于模拟电路反应慢,跟踪不及时,可靠性差。欧奏沛尔研发的协振频率自锁技术利用数字化集成技术,将臭氧发生器供电频率与协振频率在几毫秒内锁定,无论臭氧发生器工况发生如何改变整个系统一定工作在协振频率上。
    这一技术为臭氧发生器工作效率的进一步提高提供了保证。



     

  • 高频软开关技术:


    零功率开关技术是欧奏沛尔电源技术创新。该技术实现了高频开关(IGBT)每秒约8000次的开与关时均处在零电压和零电流状态,彻底解决了大功率IGBT技术可靠性低的技术难题。
     

  •  

经常有朋友来咨询到底选空气源的臭氧发生器还是富氧源的臭氧发生器还是液氧源的臭氧发生器(重点不在大图,在文字)。
今天重点解析不同气源的臭氧发生器对整个工程的影响。工业型(家用臭氧发生器不在此概括)
臭氧发生器按供气气源类型分类为:(这是大家比较常见的区别)
1、空气源臭氧系统构成示意图
 
  
 
 
2、富氧源臭氧系统构成示意图
 
 
 
3、液氧源臭氧系统构成示意图


下面重点分析表图中未能表现出来的区别。
首先从配置原理上来简单的分析下:
空气源:利用空气进行制造臭氧,空气含氧量为21%
富氧源:利用空气提取氧气纯度至90-93%进行制造臭氧
液氧源:利用液态氧气化后得到99%的氧气然后加入总气量的3%-5%的氮气后进行制造臭氧。
下面将以10kg臭氧发生器为基准。对不同气源的投资成本、运行成本、性能进行对比。(只算主要负荷)
空气源:空压机55kw,臭氧发生器160kw。臭氧浓度25-30mg/l,产量10kg。气量400Nm³/h。
富氧源:空压机110kw,臭氧发生器75kw。臭氧浓度150mg/l,产量1okg。气量68Nm³/h
液氧源:臭氧发生器75kw。臭氧浓度150mg/l,产量10kg。气量68Nm³/h,气量费用为1.5元/Nm³/h
下面开始计算:
空气源:因为空气源的氧气浓度低只有21%,如果想达到10kg就需要更多的气体进入发生器。所以臭氧发生器要做的大一些。基本上空气源10kg的臭氧发生器=20kg的液氧或者富氧源的臭氧发生器。
55kw空压机按照10万计算。空气源10kg臭氧发生器按照100万计算。
由于气量比较大,需要配套200个曝气盘。其实曝气盘没有多少差值。差值主要在后端。臭氧氧化池的底面积要大6倍以上(这是重点)。尾气破坏器的处理风量(请注意不是处理臭氧量)也要大6倍以上。
富氧源:富氧源的重点是把空气通过制氧机进行了气体提纯。所以他需要更多的空气动能,110kw空压机产生的空气通过制氧机制取80Nm³/h的气体供给臭氧发生器。臭氧发生器仅需要空气源的一半即可。(不论造价还是占地面积)
110kw空压机按照20万计算,富氧源10kg臭氧发生器按照50万计算。制氧机50万
出气量为68Nm³/h,曝气盘只需要配套34个即可。
液氧源:只是气源采用预购买储存的方式,在补充部分空气即可,臭氧发生器与富氧源的一致。说到底液氧源的99%的氧气浓度经过补充氮气后也就成了富氧源。**的区别就是不用管理设备了。没有液氧了就买。有得就有失,要考虑运输问题、还要考虑冬季和夏季液氧的价格波动。见过2600的液氧,也见过680的液氧。液氧价格和过山车一样。
20m³液氧罐+汽化器(大约7天用一罐)市场价格基本要在2个110万的空压机的价格。这里暂计40万。臭氧发生器50万计算
出气量为68Nm³/h,曝气盘只需要配套34个即可。
*后总结一下
从性能来说:液氧源和富氧源并列**,空气源*低
从投资成本计算:液氧源*低,空气源次之,富氧源*低。市场上来说:空气源*低,液氧源次之,富氧源*贵.。究其原因还是说低浓度的设备更好做,少用些配件影响也不大。做的多了大家就开始拼低价。
从运行成本计算:氧气按照1.5元/Nm³/h,平均电费按照0.6元。
空气源:运行费用193元
富氧源:运行费用111元
液氧源:运行费用147元
虽然显示液氧源运行费用低于富氧源,其实不是。此次计算未考虑设备维护成本,液氧源基本不需要维护成本。
综上所述,选择臭氧发生器优先选择液氧源,现场不具备液氧罐的安装条件或者交通不便时请考虑富氧源。至于空气源建议暂时不要考虑。土建要多花不少费用,而且同混合效率的情况下空气源溶入的臭氧更少。工艺上来说会不会造成总氮升高?

转载请说明,纯手打。写的比较凌乱,希望对各位有所帮助。文中所有的设备价格均不真实,但是比例是对的。请勿喷。

Production

The industrial production of ozone (O3) is always achieved by the reaction of oxygen atoms (O) with oxygen molecules (O2), and the former is generated simultaneously.  Ozone production requires a gas ELECTRIC DISCHARGE COMPARTMENT (EDC), with two electrodes separated by a dielectric material. The dielectric material is used for isolation purposes, and to protect the current -bearing electrodes from short - circuiting.
High-frequency, high voltage AC power applied on the electrodes produces ozone by means of "silent" or "dark" electrical discharge. The supply of electrical power produces an endothermic process, up to approx. 95% of which is released in the form of heat, which is dissipated by an cooling system, which may be air or water based.
An ozone generator refers a system that contains a REACTION MODULE(s) (ozone generating device) which contains one or numerous EDC cell(s), an electric supply unit, pipe lines for cooling water and gases, and a automatic control unit.

MWC value

The MAC value (Maximum Workplace Concentration) is defined as the maximum concentration of a substance, e.g. in the form of a gas, in the air in the workplace.
At this concentration, no harmful effects to health are anticipated, even if an individual is subjected to this concentration for 8 hours on a daily basis (40 hours a week).
The MAC value for ozone is 0.1 ppm ≈ 0.2 mg/m³.

OTV value

The OTV value (Odor Threshold Value) is defined as the most minimal concentration of a gaseous substance that can be perceived by the olfactory sense.
The OTV for ozone is 0.02 ppm . 0.04 mg/m3.

Efficiency of ozone production

The efficiency of ozone production is mostly measured by electric power consumption, which depends on many factors.

Working temperature of an ozone reaction module 

Any ozone generating device must be cooled, most likely by cooling water because of its effectiveness. Only very small ozone generators (less than a few grams per hour) may use air cooling means. 
The efficiency of a reaction module is greatly affected by working temperature, which is the temperature within the EDC, that can be roughly estimated by the average of temperatures of inlet and outlet of cooling water. The lower the working temperature, the higher the efficiency.  The efficiency of an ozone generator can be doubled if the temperature drops from 30ºC to 15ºC. In most cases, a reaction module works at 5-32ºC.  An ozone generator should not be used at any working temperature above 35ºC. Any efficiency measurement of an ozone generator should come with a specific working temperature.  If the temperature is not mentioned, then 25ºC is assumed.

Feed gas 

Oxygen or gases containing oxygen, such as compressed air or ambient air, is used as feed gas. The feed gas must be purified by filtered, free of oil and grease, and dry (a dew point of at least -45°C is necessary).
Ozone generators can use either oxygen or air as the feed gas.  Due to the low oxygen content in air and the difficulties to maintain the cleanness and dryness of air feed, it is highly recommended to use pure oxygen or oxygen enriched gas prepared from air by molecular sieves (90-95% oxygen) for ozone generation.  If ozone is used in water treatment, higher ozone concentration in the gas form helps the dissolution and reactions of ozone in water.  Using air will dramatically increase energy cost of ozone production.

Ozone concentration 

Ozone concentration can be measured by Iodine titration or UV light absorption.  Since ozone decomposes along with the generation in the EDC, the higher the concentration, the lower the efficiency. At a high ozone concentration, less gas supply is needed for specific ozone capacity.  Less gas supply also means less energy consumption.  Higher ozone concentration also help the reaction of ozone.  Hence, targeted ozone concentration should be considered for the total energy consumption including feed gas preparation and cooling, when an ozone application is designed.
Any statement about ozone generation efficiency should come with a specified ozone concentration, 10% of ozone in pure oxygen (150g/m3) is usually aimed by ozone generators in the market.
Energy consumption at different ozone concentrations (25ºC, 92% oxygen)





Electric discharge compartment parameters 

In general, lower voltage favors higher efficiency because the production of ozone is proportional to electric current. It is know that the narrower the EDC, the lower the voltage. It is an advantage for flat plate type of reaction module to reduces thickness of the EDP to ~ 0.2 mm over the glass tube type of reaction module which has ~0.5 mm thickness of EDC.
The frequency inherent of flat plate type of reaction module is around 8000 Hz. The electric power efficiency of a ozone generator is significantly higher than the inherent frequencies of glass-tube technology.
In the EDC, ozone is produced and decomposed in the same time under the effect of dark electric discharge.  To reach a certain concentration of ozone, the shorter pass-way of the EDC, the less chances for ozone to decompose.  Flat plate ozone generator EDC pass way is about 200 mm, glass tube ozone generator can go as long as 2000mm when higher concentration is desired.

Electric power parameters 

A reaction module at working conditions has a equivalent capacitance, which forms a LC oscillation with an inductance in the power unit at a specific oscillation frequency (OF), the reaction module works most effectively when the power unit supplies AC power at the same frequency of the OF. The power frequencies of the most ozone generators in the market work at a fixed frequency pre-set by the manufacturer, which should be close to the OF.  However, the OF of a reaction module varies when the working conditions change.  When a reaction module works at different production, a different gas presser, a different temperature and so on, a fixed power frequency is off-tuned and works at a lower efficiency.  A much better power unit for an ozone generator should supply AC power at the exactly OF, and should be locked at the OF even the OF changes with the working conditions.  Power unit with OF lock can also reduce energy consumption by heat releases from IGBT devices, and from the main transformer.

Ozone applications

Disinfection

Ozone is a kind of broad-spectrum and efficient disinfectant and bactericide, having extremely strong killing effect for bacteria, mould, virus and other microorganisms.  It has great superiority in terms of disinfection in hospitals and homes both for air and water, as well as treatment of some diseases.  Ozone is widely used in disinfection of water in swimming pool and bottled water for drinking. 
One other promising application is using ozone to disinfect ship ballast water.

Water treatment 

Ozone is also a very powerful oxidizing agent, it can oxidize almost all organic substances in water, and alternate the properties of such substances. This became very important for acute waste water treatment.  When water is treated by conventional waste water treatment means, there are "left-over" substances which are less bio-degradable.  If the resulted water needs to be treated further, the properties of those substances should have to be alternated.  Ozone is the most "green chemical" to oxidize those substances into more bio-degradable forms and further to be removed by a following bio-process.  Ozone can reduce the Chemical Oxygen Demand (COD) of water by itself as well.  Ozone is widely used in drinking-water purification, treatment of medical and industrial wastewater, pretreatment for water reclamation.

Gas and air treatment

Nitrogen oxides at lower oxidation state of nitrogen (NO, N3O2, NO2) are hard to be removed from gas that generated by combustion of fossil energy sources, especially coal, resulting air pollution.  Treating such oxides by ozone yield much water soluble nitrogen oxides (mainly N2O5) which can be removed easily from the gas by water washing.
Ozone is used in the removal of odor in gases and air.

Capacity calculations

Ozone capacity is calculated by:
DO=c*Qn
where as:
DO--the capacity of ozone production, kg/h
c--the concentration of ozone, mg/L or g/m3
Qn--actual gas flow rate at normal conditions
When gas flow is measure by a float flow meter at conditions other than normal conditions, the readings have to be corrected according to the actual pressure and temperature; and according to the difference of gas densities if the meter is calibrated using a different gas or gas composition other than the actual gas or gas composition:
Qn= Qs
where as:
Qs--reading of a flow meter at actual conditions, m3/h
Ps--actual absolute pressure of the gas, Pa
Pn--absolute pressure at normal conditions, (1.013*105Pa)
Tn-- absolute temperature at actual conditions, K
Ts-- absolute temperature at which the meter is calibrated, K
Da--density of gas used for meter calibration , g/m3
Do-- density of the actual gas or gas composition, g/m3
For example, an air float flow meter (calibrated at 20ºC) is used to measure the flow of pure oxygen at a pressure of 1 bar (meter reading at 25ºC), the flow and capacity is calculated as:
Qn= Qs=  =1.334*Qs
DO=c*Qn=1.334*c*Qs
when working conditions change, the calculation should be changed accordingly by the control board or by the PLC in ozone generator.  Unfortunately some manufacturers give a fixed calculation formula in calculation settings which does not accommodate numerous working conditions.